

Information System Design Lecture 1: Class Intro

Dr. Moustafa Alzantot

Course Overview

- An introductory class to Information System design with focus on software design approaches and big data.
- Prerequisites:
 - Computer Programming
 - Object Oriented Design

Course Overview

- Course Staff:
 - Dr. Moustafa Alzantot (<u>m alzantot@f-eng.tanta.edu.eg</u>)
- Teaching Assistant
 - Eng. Hesham Rezk (<u>Hesham.Magdy@f-eng.tanta.edu.eg</u>)

Logistics (Tentative Grading)

- Grading:
 - 60% final exam
 - 20% class project
 - 20% midterm and assignments

Course Topics (Tentative Schedule)

Week	Topics
Week 1	Class Intro
Weeks 2	Object Oriented Design
Week 3-4	Software Design Patterns
Weeks 5	Service Oriented Architecture
Weeks 6	Big Data Intro and Characteristics
Week 7	Distributed File System & Apache Hadoop
Weeks 8-9	Big Data Modeling
Weeks 10-11	Big Data Retrieval and Integration
Weeks 12-13	Big Data Processing

Information System Design

Information System

- Information system
 - people build and use to collect, create, and distribute useful data.
 - coordination, control, analysis and visualization in an organization.

A combination of hardware, software, telecommunications networks that

• Information systems are interrelated components working together to collect, process, store and disseminate to support decision making,

Examples of Information System

- E-Commerce website
- Online learning
- Social network

Components of Information System

- Hardware
- Software
- Telecommunication
- Database and Data-warehouse.
- Human

SDLC: Waterfall model

- Traditional approach for system analysis and design.
- **Requirements**: communication with the user to identify the user's requirements.
- **Design**: use the information collected in requirement phase to design a system.
- **Implementation**: writing the actual code to implement the solution.

SDLC: Waterfall model

- Verification: ensure that the project meets customer expectation.
- Maintenance: fixing problems the customer finds while using the software. Problems may be due to requirements, design or implementation errors.

SDLC

Issues with the waterfall model:

- Lack of communications with customer after requirement until implementation complete.
- Hard to adjust to changes in users' requirements.
- Takes longer to finish compared to iterative approaches such as agile.
- Not suitable for long and ongoing projects.

Agile

- Agile is a collection of principles used in software development and project management.
- Focuses on incrementally delivering product to the user
- Waterfall is linear and sequential; Agile is incremental and iterative.

Agile

- software development.
- Read it at:

https://agilemanifesto.org/

Agile manifesto created in early 2001 outlines the major principles of Agile

The Agile Manifesto

OVER

Here are some of the values mentioned in the manifesto:

Individuals and Interactions

Working Products

Customer Collaboration

Responding to Changes

Processes and Tools

Comprehensive Documentation

Contract Negotiation

Following a plan

Agile methodologies

To satisfy the agile manifesto, teams should:

- Have improved communication inside the team.
- Focus on creating software that delivers business values in each iteration.
- Allow customers to provide continuous feedback during development.
- Be flexible to accept and respond to scope changes.

Agile methodologies

Agile has different methodologies

- •Extreme Programming (XP)
- •Scrum
- •Kanban

is called a sprint.

- •Sprints have a fixed ength between 1 and 4 weeks.
- •First sprint is a special one called **Sprint 0** that prepares enough architecture to start development.

Sprint: project management is broken into a number of iterations. Each iteration

- - •User story format:
 - •As a _____, I want _____ because
- •**Team:** members who build the actual product (e.g. developer, tester, etc.)
- •Scrum-master: A coach for the entire team. Helps resolve problems and enforces that scrum process is followed properly.

•Product owner: one person responsible for collecting user requirements in the form of "User stories" and adds them to a list of requirements called "Backlog"

- •Sprint planning: A time-constrained meeting to start a new sprint. During the meeting, the team selects high priority user-stories from product backlog and adds item to the Sprint backlog. This may include unfinished user stories from previous sprint backlog.
- •Daily Standup: a short (no longer than 15 minutes) meeting where each participant answers the following questions:
 - •What did I do yesterday that helps to achieve the sprint goal.
 - •What will I do today to help the team meeting the sprint goal.
 - •Did I face any challenges that blocks me or the team form achieving the sprint goal.

- event, the team evaluates what has been achieved during the sprint.
- sprints.

•Sprint review: An event taking place at the end of the sprint. During this

•Sprint retrospective: Usually happens after sprint review. The purpose is to discuss and understand what went well and what could be improved in future

